Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education (9–1) | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 3 1 2 1 8 2 4 4 8 6 ### **CO-ORDINATED SCIENCES** 0973/41 Paper 4 Theory (Extended) May/June 2019 2 hours Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer **all** questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 32. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. This document consists of 30 printed pages and 2 blank pages. 1 (a) The graph in Fig. 1.1 shows the effect of light intensity on the rate of photosynthesis. Fig. 1.1 | (i) | Describe the results shown in Fig. 1.1. | | |-----|--|---| | | | | | | | | | | [| | | | Explain the reasons for the shape of the part of the graph labelled X . | | | | | | | | | | | | | | | | [| 2 | (b) Fig. 1.2 shows a cross-section through a leaf. Fig. 1.2 | | (i) | Describe two features of the leaf shown in Fig. 1.2 that allow efficient gas exchange occur. | e to | |-----|------|---|---------| | | | 1 | | | | | | | | | | 2 | | | | | |
[2] | | | (ii) | On Fig. 1.2, use a label line to label an example of a cell that is best adapted photosynthesis. | for | | | | Include the name of the cell. | [2] | | (c) | Sta | te the chemical formulae of the two products of photosynthesis. | | | | 1 | | | | | 2 | | | | | | | [1] | | | | [Tota | l: 9] | | 2 (a) Car | rbon is use | d to extra | ct zinc from | ı zinc oxide | . ZnO | |------------------|-------------|------------|--------------|--------------|-------| |------------------|-------------|------------|--------------|--------------|-------| | (i) | Write a balanced symbol equation for this reaction. | | |-------|---|-----| | | | [2] | | (ii) | Zinc oxide consists of Zn^{2+} and O^{2-} ions. | | | | State which ion is being reduced in this reaction. | | | | Explain your answer in terms of the movement of electrons. | | | | | | | | | | | | | [1] | | (iii) | Explain why carbon cannot be used to extract aluminium from aluminium oxide. | | | | | | (b) Aluminium is extracted by the electrolysis of aluminium oxide. Aluminium oxide consists of Al^{3+} and O^{2-} ions. Fig. 2.1 shows the industrial apparatus used to produce aluminium. Fig. 2.1 (i) State the name of an ore that contains aluminium. ______[1 | | (ii) | Explain why aluminium oxide must be in a liquid state for electrolysis to occur. | | |-----|-------|--|------| | | | | | | | (iii) | Explain why cryolite is mixed with aluminium oxide for use in this electrolysis. | | | | | | | | | | | נין | | | (iv) | Write the ionic half-equation for the reaction occurring at the cathode during electrolysis. | this | | | | | [2] | | (c) | Aluı | minium ore is a finite resource, so aluminium must be conserved. | | | | (i) | State what is meant by the term <i>finite resource</i> . | | | | • | | | | | | | | | | | | [1] | | | | | | | | (ii) | Suggest how aluminium can be conserved. | | | | | | | | | | | [1] | | | | [Total: | 111 | | | | [Total: | 1 | **3** Fig. 3.1 shows a motorcycle with a rear lamp. Fig. 3.1 | (a |) The lam | n has a | resistance | of 30 Q | and is | powered by | v a 12\ | / battery | |----|-----------|---------|-------------|---------|---------|------------|----------|-----------| | ν- | , inclain | p nao a | 10010141100 | 0.0055 | aria io | poworda b | y a 12 1 | Duttory | (i) Show that the current in the lamp is 0.40A. [1] (ii) Calculate the power used by the lamp. Show your working. power = W [2] (iii) Calculate the charge that passes through the lamp in 30 minutes. Show your working. charge = C [2] (b) The battery is charged by an a.c. generator. Fig. 3.2 shows a simple a.c. generator. Fig. 3.2 - (i) On Fig. 3.2, label the slip rings with the letter R. [1] (ii) On Fig. 3.2, label the coil with the letter C. [1] (iii) On Fig. 3.2, show the direction of the magnetic field with an arrow (→). [1] (iv) The output is an alternating current. Describe the difference between direct current (d.c.) and alternating current (a.c.). - (c) The motorcycle engine is noisy and emits sound waves that pass through the air. The sound waves pass through the air as a series of compressions (C) and rarefactions (R). Fig. 3.3 shows the positions of the compressions and rarefactions as the sound wave passes through the air. Fig. 3.3 0973/41/M/J/19 [Total: 12] [Turn over © UCLES 2019 4 The pie chart in Fig. 4.1 shows the different causes of deforestation in a country. Fig. 4.1 | (a) | Calculate the tot | al percentage of | deforestation of | caused by agriculture. | |-----|-------------------|------------------|------------------|------------------------| |-----|-------------------|------------------|------------------|------------------------| | | % | [1] | |--|---|-----| |--|---|-----| | b) | Describe how slash-and-burn agriculture can increase the carbon dioxide concentration the atmosphere. | n ir | |----|---|------| ſΩ | | (c) | Describe the undesirable effects of deforestation on soil. | |-----|--| | | | | | | | | | | | | | | [3] | | (d) | Forests are ecosystems. | | | Define the term <i>ecosystem</i> . | | | | | | | | | | | | [2] | | | [Total: 9] | 5 Petroleum is the raw material for the production of many useful substances. Fig. 5.1 shows processes **A**, **B** and **C** that can be used in the production of ethanol. Fig. 5.1 (a) Name the processes by drawing one line from each process to its name. | process | name | |---------|-------------------------| | | catalytic addition | | A | | | | cracking | | В | fermentation | | | leimentation | | С | fractional distillation | | | | | | polymerisation | (b) The formula of ethanol is ${\rm C_2H_5OH.}$ Explain why ethanol is **not** a hydrocarbon. [2] (c) Fig. 5.2 shows a camping stove which uses ethanol as the fuel. Fig. 5.2 Complete combustion of ethanol produces carbon dioxide and water. The balanced equation for this reaction is shown. $$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$ The stove uses 22g of ethanol to boil 1 dm³ of water. (i) Complete steps 1 to 3 to calculate the maximum mass of carbon dioxide produced when boiling 1 dm³ of water. Show your working. [M_r: carbon dioxide, 44; ethanol, 46] Step 1 Calculate the number of moles in 22g of ethanol. number of moles = Step 2 Calculate the number of moles of carbon dioxide produced when 22 g of ethanol burns. number of moles = Step 3 Calculate the mass of carbon dioxide produced when boiling 1 dm³ of water. mass =g [3] | (ii) | A similar | stove | uses | butane | as | the fuel | | |------|-----------|-------|------|--------|----|----------|--| | | | | | | | | | Butane produces less carbon dioxide when boiling $1\,\mathrm{dm}^3$ of water. Suggest whether using the butane stove or the ethanol stove causes less damage to the environment. type of stove explanation [Total: 8] [2] # **BLANK PAGE** | 6 | (a) The v | isible light produ | iced by the he | eadlamps of a | train is part of t | he electromag | netic spectrum. | |---|-----------|---------------------------------|----------------|------------------|--------------------|---------------|-----------------| | | • • | Vrite visible light
ig. 6.1. | t in the corre | ct position in t | he incomplete | electromagne | tic spectrum in | | | gamma | | ultraviolet | | | microwaves | | | _ | | | | Fig. 6.1 | | | | | J | | | | | | | | | |----------|------|-------------------|--------------------|-------------------|------------------|------------------|-----------------|---| | | | | | Fig. 6.1 | | | [1] | | | | (ii) | All electromagn | netic waves tra | vel at the same | e speed. | | | | | | | State the speed | d of light in a va | acuum. | | | | | | | | | | | | | m/s [1] | ı | | (b) | | approaching tra | | | | | | | | | | speed of sound | | | | i steel is 60001 | 11/5. | | | | (i) | Suggest a value | • | i oi souria triro | ugii water. | | | | | | | Explain your an | | | m / n | | | | | | | speed of sound | | | | | | | | | | explanation | | | | | | | | | | | | | | | [1] | ĺ | | | (ii) | Calculate the tir | | oetween a sour | nd travelling 0. | 50 km through | air and 0.50 km | ı | time difference =s [2] © UCLES 2019 0973/41/M/J/19 Show your working. | (iii) | The train emits sound waves with a frequency of $500\mathrm{Hz}$ which travel through the air at a speed of $330\mathrm{m/s}$. | |-------|---| | | Calculate the wavelength of these waves. | | | Show your working. | | | | | | | | | | | | | | | wavelength = m [2] | | (iv) | Sound waves are longitudinal waves. Visible light waves are transverse waves. | | | Describe the differences between longitudinal and transverse waves in terms of the direction of travel of the waves, and the direction of oscillation or vibration. | | | You may draw a diagram if it helps your answer. | [2] | | | [Total: 9] | **7 (a)** A student investigates the effect of temperature on the rate of diffusion of red dye into agar jelly cubes. The student prepares three cubes of agar jelly A, B and C. - Each cube is equal in size. - A is kept at 30 °C, B is kept at 25 °C, C is kept at 20 °C. - Three separate containers of red dye are also kept at 30 °C, 25 °C and 20 °C. - Each cube is immersed in red dye equal to its temperature for 10 minutes. - The cubes are then removed from the dye and cut in half. Fig. 7.1 shows the cubes cut in half. Fig. 7.1 Table 7.1 shows the results. Table 7.1 | cube | temperature of cube and dye/°C | diffusion distance
(after 10 minutes)/cm | rate of diffusion/
cm per min | |------|--------------------------------|---|----------------------------------| | Α | 30 | 1.0 | | | В | 25 | 0.7 | 0.07 | | С | 20 | 0.5 | 0.05 | (i) Calculate the rate of diffusion for cube A. | cm per min | [1] | |------------|-----| | - I | | | | (ii) | Use the results in Table 7.1 to describe the relationship between temperature and the rate of diffusion. | |-----|-------|--| | | | [1] | | | (iii) | State one variable, other than the size of the cubes, that should be kept constant in this investigation. | | | | [1] | | (b) | Ехр | lain why the red dye diffuses into the agar jelly. | | | | | | | | | | | | | | | | [2] | | (c) | Mat | erials diffuse in and out of living cells. | | | Nan | ne the gas produced by respiration that diffuses out of cells. | | | | [1] | | | | [Total: 6] | | • | (a) | (1) | masses of the gases nitrogen and chlorine. | |---|-----|------|---| | | | | M _r (nitrogen) = | | | | | M _r (chlorine) =[1] | | | | (ii) | Using your answer to (a)(i), state and explain which of these two gases diffuses at the greater rate. | | | | | gas | | | | | explanation | | | | | [1] | **(b)** Chlorine occurs naturally as a mixture of mainly two isotopes, chlorine-35 and chlorine-37. Complete Table 8.1 to show some information about the atomic structures of these isotopes. Table 8.1 | isotope | number of nucleons | number of protons | number of neutrons | number of electrons | |-------------|--------------------|-------------------|--------------------|---------------------| | chlorine-35 | 35 | 17 | | | | chlorine-37 | 37 | 17 | | | [2] (c) A student mixes colourless aqueous solutions of chlorine and sodium bromide. Fig. 8.1 shows the apparatus she uses. Fig. 8.1 | | (i) | A reaction occurs when chlorine solution is mixed with sodium bromide solution. | |-----|------|--| | | | Predict and explain the student's observation when these solutions are mixed. | | | | observation | | | | explanation | | | | [2 | | | (ii) | Write a word equation for the reaction that occurs when these solutions are mixed. | | | | [2 | | (d) | The | student adds an orange solution of bromine to a colourless solution of sodium fluoride. | | | | dict and explain the student's observation when the solution of bromine is added to the tion of sodium fluoride. | | | obs | ervation | | | exp | anation | | | | [2 | **9** (a) During a mission to the Moon in 1971, an astronaut dropped a feather and a hammer. The feather and hammer were released from the same height at the same time. Both fell for 1.3s, and landed at the same time. The acceleration due to gravity on the Moon is 1.6 m/s². Assume that the Moon has no atmosphere. Fig. 9.1 [2] (i) On Fig. 9.1 draw the speed-time graph for the falling feather. | | (ii) | The experiment is repeated on Earth. State two differences in the results obtained. | | |-----|------|--|-----| | | | Explain your answers. | | | | | difference 1 | | | | | explanation | | | | | | | | | | | | | | | difference 2 | | | | | explanation | | | | | | | | | | | | | | | | 4] | | (b) | The | astronaut wears a white suit rather than a black suit. | | | | Sug | gest and explain a reason for this. | | | | | | | | | | | | | | | [| 2] | | | | | | | (c) | The | astronaut is exposed to more ionising radiation than people who remain on the Earth. | | | | Stat | e one harmful effect of ionising radiation on the human body. | | | | | | | | | | [| 1] | | (d) | Alpl | na radiation is one form of ionising radiation. | | | ` , | • | sotope of plutonium, $^{239}_{94}$ Pu, decays by alpha emission to produce an isotope of uraniun | n. | | | | the correct nuclide notation to write a symbol equation for this decay process. | | | | | _ | | | | 94 | $Pu \ \rightarrow \ \dots \ + \ \dots \ $ | 2] | | | | [Total: 1 | _ | | | | [Total: 1 | ٠.٦ | 10 (a) Fig. 10.1 shows a cross-section through a vein when seen under a light microscope. Fig. 10.1 | | (i) | On Fig. 10.1 draw two label lines to identify the: | | |-----|------|--|-----| | | | lumenwall of the vein. | [2] | | | (ii) | Name one structure of veins not visible in Fig. 10.1. | | | | | | [1] | | (b) | · | plain why the wall of an artery is much thicker than the wall of a vein. | | | | | | | | | | | | | | | | | | (c) | Cor | onary heart disease is caused by a blockage in the coronary arteries. | | | | Stat | te two lifestyle factors that increase the risk of coronary heart disease. | | | | 1 | | | | | 2 | | [2] | | (d) | Hor | rmones are released into blood. | | |-----|------|---|---------| | | (i) | Name the hormone that: | | | | | is released in stressful situations | | | | | decreases the glucose concentration of the blood. | | | | | |
[2] | | | (ii) | Auxin is a plant hormone. | [-] | | | | State the effect of auxin on plant cells. | | | | | | [1] | | | | [Total: | 10] | 11 (a) A student investigates the rate of reaction of calcium carbonate with dilute hydrochloric acid. The word equation for the reaction is shown. calcium carbonate + hydrochloric acid → calcium chloride + water + carbon dioxide Fig. 11.1 shows some of the apparatus he uses. Fig. 11.1 You may draw on Fig. 11.1 to help your answer. | (i) | Suggest what other equipment he needs and how he would use it to calculate the rate of | |-----|--| | | carbon dioxide produced. | | IO. | |-----| | [2] | (ii) He carries out the experiment using dilute hydrochloric acid at 20 °C. He repeats the experiment at 30 °C. Fig. 11.2 shows his results. Fig. 11.2 State and explain the differences between the graphs in terms of the movement of reacting particles. |
 |
 |
 |
 |
 |
 | |------|------|------|------|------|---------| |
 |
 |
 |
 |
 |
 | | | | | | | | |
 |
 |
 |
 |
 |
 | | | | | | | | | | | | | | | |
 |
 |
 |
 |
 |
 | | | | | | | | | | | | | | | |
 |
 |
 |
 |
 |
 | | | | | | | | | | | | | | | |
 |
 |
 |
 |
 |
[3] | | | | | | | | (b) Lead chloride is an insoluble salt. Describe a method of making solid lead chloride from reactants chosen from Table 11.1. **Table 11.1** | compound | solubility in water | |-------------------|---------------------| | calcium chloride | soluble | | calcium nitrate | soluble | | calcium sulfate | insoluble | | lead carbonate | insoluble | | lead nitrate | soluble | | lead sulfate | insoluble | | magnesium sulfate | soluble | | silver chloride | insoluble | | sodium chloride | soluble | | sodium nitrate | soluble | | | reactants and | | |-----|--|-----| | | method | [4] | | | | | | (c) | Lead chloride has a melting point of 501 °C. | | | | Explain how the structure of lead chloride causes it to have a high melting point. | | | | | | | | | | | | | | | | | [2] | | | | | [Total: 11] **12** Fig. 12.1 shows a solar-powered golf cart, with solar cells on the roof. Fig. 12.1 The solar cells produce electrical energy using solar energy. The Sun is the source of this energy. | (a) | Name two energy resources that do not have the Sun as their source of energy. | |-----|---| | | 1 | | | 2 | | | | | (b) | During the golf cart's journey, the temperature in the tyres increases. | | | The volume of air in the tyres does not change. | | | Explain in terms of molecules the effect on the pressure of a gas due to an increase it temperature at constant volume. | | | | | | | | | | | | [2 | (c) The golf cart often travels across sloping fields so stability is important in its design. Fig. 12.2 shows the cart on a slope. Fig. 12.2 The centre of mass of the golf cart is shown by the letter **X**. State the effect of raising the centre of mass of the golf cart on its stability. (d) A spectator takes a photograph of a golfer with a camera. The camera uses a thin converging lens to focus light rays onto the light sensor inside the camera. (i) Complete the ray diagram in Fig. 12.3 to show this. Fig. 12.3 g. 12.3 [1] (ii) The lens is made from glass. Glass has a refractive index of 1.33. Define refractive index in terms of the speed of light in a vacuum and in glass. | | (iii) | The image produced by the lens on the light sensor is a real image. | | | |-----|-------|--|-----------|----| | | | Describe the difference between a real image and a virtual image. | IJ | | (e) | Des | scribe in terms of the forces between the atoms why solids have a fixed shape. | | | | (-) | 200 | sondo in termo or the terese someon the dieme may conde have a linea chape. | | | | | | | | •• | | | | | [| 1] | | | | | [Total: 8 | 8] | | _ | oortance of the shape | • | | | |---------------|-----------------------|--|---|--| | olain the imp | oortance of the shape | of an enzyme. | - | Table 13.1 | | | | | | | oolour with | | | solution | solution | solution | Benedict's solution | | | Α | blue-black | blue | red | | | В | yellow-brown | blue | blue | | | С | blue-black | purple | red | | | D | yellow-brown | blue | red | | | E | blue-black | blue | green | | | | solution A B C D E | solution Colour with iodine solution A blue-black B yellow-brown C blue-black D yellow-brown E blue-black e of the solutions A, B, C, D or E or | Table 13.1 Solution Colour with iodine Solution Colour with Biuret Solution A blue-black blue B yellow-brown blue C blue-black purple D yellow-brown blue E blue-black blue | Table 13.1solutioncolour with iodine solutioncolour with Biuret solutioncolour with Benedict's solutionAblue-blackblueredByellow-brownblueblueCblue-blackpurpleredDyellow-brownblueredEblue-blackbluegreen | [Total: 6] # **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. | ţ | |----------| | \equiv | | ā | | ĕ | | | | Φ | | Ш | | 4 | | 0 | | <u>e</u> | | 9 | | 용 | | Ë | | O | | ≐ | | Q | | .0 | | Ē | | Φ | | Δ | | Φ | | ے | | ᆮ | | | \text{\tinx{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex | 2
He | helium
4 | 10 | Ne | neon
20 | 18 | Ar | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|---|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | II/ | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | B | bromine
80 | 53 | Н | iodine
127 | 85 | Αt | astatine
- | | | | | | | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>P</u> | tellurium
128 | 84 | Ъо | moloui nm
– | 116 | | livermorium
- | | | > | | | 7 | Z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | Ξ | bismuth
209 | | | | | | ≥ | | | 9 | O | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | S | tin
119 | 82 | Ъ | lead
207 | 114 | Εl | flerovium
- | | | = | | | 2 | В | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | 11 | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | ပ္ပ | cadmium
112 | 80 | Ρ̈́ | mercury
201 | 112 | Ö | copernicium | | | | | | | | | | | | 59 | Cn | copper
64 | 47 | Ag | silver
108 | 79 | Αn | gold
197 | 111 | Rg | roentgenium
- | | Group | | | | | | | | | | 28 | ïZ | nickel
59 | 46 | Pd | palladium
106 | 78 | 풉 | platinum
195 | 110 | Ds | darmstadtium
 | | Ş | | | | | | | | | | 27 | රි | cobalt
59 | 45 | 몬 | rhodium
103 | 77 | 'n | iridium
192 | 109 | ¥ | meitnerium
- | | | | - エ | hydrogen
1 | | | | | | | 26 | Ьe | iron
56 | 44 | Ru | ruthenium
101 | 92 | Os | osmium
190 | 108 | H | hassium
- | | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
— | | | | | | _ | pol | ass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | qN | niobium
93 | 73 | Б | tantalum
181 | 105 | Ob | dubnium
— | | | | | | | atc | re | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | Ŗ | rutherfordium
— | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium
— | | | _ | | | က | := | lithium
7 | £ | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | ВВ | rubidium
85 | 55 | Cs | caesium
133 | 87 | ъ | francium
— | | 71 | n | Intetium | 175 | 103 | ۓ | lawrencium | ı | |----|----------------|--------------|-----|-----|-----------|--------------|-----| | 70 | ΥÞ | ytterbium | 173 | 102 | Š | nobelium | ı | | 69 | E | thulium | 169 | 101 | Md | mendelevium | ı | | 89 | щ | erbinm | 167 | 100 | Fn | fermium | ı | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | ı | | 99 | ò | dysprosium | 163 | 86 | ర | californium | ı | | 65 | Tp | terbium | 159 | 26 | BK | berkelium | 1 | | 64 | Q q | gadolinium | 157 | 96 | Cm | curium | ı | | 63 | En | europium | 152 | 98 | Am | americium | ı | | 62 | Sm | samarium | 150 | 94 | Pn | plutonium | ı | | 61 | Pm | promethium | ı | 93 | ď | neptunium | ı | | 09 | ρN | neodymium | 144 | 92 | \supset | uranium | 238 | | 29 | Ą | praseodymium | 141 | 91 | Ра | protactinium | 231 | | 58 | Ce | cerium | 140 | 06 | 드 | thorium | 232 | | 25 | Гa | lanthanum | 139 | 89 | Ac | actinium | 1 | lanthanoids actinoids The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).